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Abstract

PXDesign achieves nanomolar binder hit rates of 20-73% across five of six diverse protein targets,
surpassing prior methods such as AlphaProteo. This experimental success rate is enabled by
advances in both binder generation and filtering. We develop both a diffusion-based generative
model (PXDesign-d) and a hallucination-based approach (PXDesign-h), each showing strong
in silico performance that outperforms existing models. Beyond generation, we systematically
analyze confidence-based filtering and ranking strategies from multiple structure predictors,
comparing their accuracy, efficiency, and complementarity on datasets spanning de novo binders
and mutagenesis. Finally, we validate the full design process experimentally, achieving high hit
rates and multiple nanomolar binders.

To support future work and community use, we release a unified benchmarking framework
at https://github.com/bytedance/PXDesignBench, provide public access to PXDesign via a
webserver at https://protenix-server.com, and share all designed binder sequences at https:
//protenix.github.io/pxdesign.
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1 Introduction

PXDesign is a model suite for de novo protein-binder design that has been validated on six targets, achieving
nanomolar binder hit rates of 20-73% on five of them and outperforming strong baselines such as AlphaPro-
teo [58] by 2-6x. These results reflect a systematic approach targeting two essential aspects of binder design
success: proposing structurally complementary candidates, and prioritizing those most likely to bind effectively.

While recent methods have advanced both stages, important gaps remain. Diffusion-based generators [24,
28, 53] and hallucination-based optimization methods [3, 13, 20, 35, 38, 39, 54] have shown promise in
proposing viable binder candidates, but direct head-to-head comparisons under consistent evaluation are
lacking. Likewise, confidence scores such as pLDDT or interface pTM from the AlphaFold series and related
variants [1, 2, 14, 19, 27, 30, 32, 32, 40, 46, 55, 56] are widely used for filtering, but important questions
remain: How accurate and generalizable are these scores? Can alternative predictors improve enrichment,
diversity, and yield? Addressing these questions is essential to building a robust, high-hit-rate method.

Here, we present PXDesign, a unified framework integrating both binder generation and confidence-based
filtering. Our main contributions are:

e Generation via two strategies: We develop both a diffusion-based (PXDesign-d) and a hallucination-based
(PXDesign-h) generation method, with architectural and algorithmic enhancements for scalability and
efficiency. Each achieves state-of-the-art in silico performance, and our head-to-head comparison reveals
their respective strengths. We also show our diffusion model’s strong capacity for diverse, designable protein
generation in unconditional tasks.

e Filtering strategies: We construct and evaluate confidence-based filters from Protenix [12] and AlphaFold-
based models [1, 27] using datasets including Cao data [11], RFDiffusion [53], EGFR [16] and SKEMPT [25,
34, 36]. Our results highlight the value of alternative predictors and show how filtering strategies influence
diversity and yield in complementary ways.

e Experimental validation across targets: We evaluated PXDesign on six diverse protein targets via in vitro
expression and binding assays. PXDesign achieves high hit rates across five targets (Table 1). Notably,
a substantial improvement the initial version (PXDesign v0) is observed on SC2RBD, where the hit rate
increased from 2 out of 9 to 4 out of 8. PXDesign outperformed AlphaProteo [58] across all evaluated
targets, achieving 2- to 6-fold higher hit rates on IL-7TRA, PD-L1, VEGF-A, SC2RBD, and TrkA.

Altogether, PXDesign delivers both high in wvitro success rates and methodological insights, guiding future
applications and enabling reproducible evaluation through open-sourced tools and a public webserver.

Table 1 Experimental hit rates (%) for designed binders across different targets and methods. “v0” indicates
results from the initial PXDesign version. See Appendix E for detailed explanations.

Method IL7RA PD-L1 VEGF-A SC2RBD TrkA TNF-«
PXDesign - 727 471 50.0 20.0 0.0
PXDesign v0 40.0 - - 22.2 - -
RFDiffusion [53] 17.0 13.0 - - 0.0 -
AlphaProteo (by HTRF) [58] 25.0 114 21.3 9.3 4.5 0.0
Chai-1d [47] 10.0 5.0 - - - -
Chai-2 [47] 80.0 70.0 - - - 21.0
Latent-X (by display) [9] 26.0 49.0 - 52.0 10.0 -
Latent-X (by HT _BLI) [9] 16.0 33.0 - 44.0 - -

2 Filtering and Ranking: Accuracy, Efficiency, and Diversity

Filtering and ranking are essential for turning large sets of generated designs into a focused shortlist of promising
candidates. In this section, we evaluate AF2-1G [53] and Protenix variants (full, Mini, and Mini-Templ) [23]
across multiple datasets to answer three key questions:



1. Accuracy: Which filters enrich true binders most effectively?
2. Efficiency: Can we reduce computational cost without sacrificing positive predictive value?
3. Diversity: Do different filters capture complementary regions of design space?

2.1 Filter Design and Setup

We constructed confidence-based filters using per-sequence and interface-level scores from AF2-1G and Protenix
variants. All Protenix models use a 2-step ODE diffusion sampler for efficiency [23|. Thresholds were tuned via
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Figure 1 Filtering and ranking power comparison. (a) Top-1% success rates for individual confidence scores derived
from AF2-IG, Protenix, and Protenix-Mini(-Templ) on Cao data. (b) Combined filter success rates across targets.
“AF3 (published)” refers to results reported by Zambaldi et al. [58], while other results are computed via our unified
pipeline. Filter thresholds for each model are listed in Table 2. (€) Venn diagrams show limited overlap between true
positives retained by Protenix and AF2-1G filters, highlighting complementary design space coverage. (d) Re-ranking
RFDiffusion binders [53] using Protenix ipTM improves success rates across all targets. RFDiffusion [53] generated 95
binder designs per target across five targets. “RFDiffusion (published)” shows the original experimental success rates,
based on filtering with AF2-IG. “Protenix ipTM Topl0(15)” reports success rates after re-ranking the same designs by
Protenix ipTM and selecting the top 10 or 15, consistently improving hit rates across all targets. (€) On the EGFR
competition dataset [16], Protenix better ranks expression and affinity, especially among binders with measurable
affinity (“Affinity(hard)”). (f) On the subset of SKEMPI2.0 [25, 34], Protenix outperforms AF2 and matches AF3 [34]
in ranking correlation. On positive-binding mutations (“Affinity(positive)”), Protenix shows pronounced advantage.



Table 2 Thresholds for combined filters. Each filter represents a model-specific combination of score thresholds
used for binary selection. “AF2-1G-easy” reflects thresholds proposed by BindCraft [38]. “AF2-IG” denotes thresholds
selected via our own grid search on Cao data; these match the values independently reported in Zambaldi et al. [58].
“AF3” refers to thresholds grid-searched in Zambaldi et al. [58]. “Protenix” denotes a unified threshold set applied
to Protenix, Protenix-Mini, and Protenix-Mini-Templ, while “Protenix-basic” represents a relaxed criterion used on
challenging targets (e.g., TNF-«) in wet-lab experiments to preserve diversity.

Filter Name ‘ Confidence Thresholds Structure Thresholds

AF3 [58] min ipAE < 1.5, binder pTM > 0.8 complex RMSD < 2.5 A

AF2-1G [58] ipAE < 7.0, pLDDT > 0.9 binder RMSD < 1.5 A

AF2-1G-easy [38] ipAE < 10.85, ipTM > 0.5, pLDDT > 0.8  binder bound /unbound RMSD < 3.5 A
Protenix [12] binder ipTM > 0.85, binder pTM > 0.88  complex RMSD < 2.5 A
Protenix-basic [12] | binder ipTM > 0.8, binder pTM > 0.8 complex RMSD < 2.5 A

grid search on Cao data [11], a retrospective benchmark of experimentally tested designs without AlphaFold-
based pre-filtering. The search process is described in Appendix A, and Table 2 summarizes the resulted
thresholds.

We also tested ranking and enrichment performance on three additional datasets:

e EGFR challenge [15]: expression and binding phenotypes for de novo binders from Adaptyv Bio.

e SKEMPI subset [25]: point mutations with measured ddG, curated to retain high-confidence AF3 structures
by Lu et al. [34].

e RFdiffusion wet-lab set [53]: binary binding outcomes for published designs.

2.2 Main Findings

(1) Accuracy — Protenix achieves higher binder enrichment. On Cao data, Protenix-derived confidence metrics
outperform AF2-IG across most targets when used individually (Figure 1a) or in combination (Figure 1b).
AF2-1IG performs better on a few specific targets, but overall Protenix’s precision and AUC are higher (see
Appendix A). On the EGFR challenge, Protenix scores correlate more strongly with experimental expression
and binding affinity than AF2 or ESM [30, 44] (Figure le). On the SKEMPI subset, Protenix matches or
exceeds AF3’s performance, especially in the subset of positive binding ddG mutations (Figure 1f). Importantly,
Protenix-based filtering can also improve hit rates on previously published designs. Similarly, in re-ranking
the 95 RFdiffusion designs [53], replacing AF2-IG with Protenix ipTM for top 10 or 15 selection substantially
increases observed success rates (Figure 1d).

(2) Efficiency — strong performance at lower cost. Protenix-Mini and Protenix-Mini-Templ achieve significant
runtime reductions compared to the Protenix full model while maintaining comparable enrichment quality,
enabling practical large-scale screening and rapid triaging of candidate pools.

(3) Diversity — complementary coverage of design space. On Cao data, the overlap between sequences
retained by Protenix and AF2-1G is surprisingly small (Figure 1¢). Each model captures different subsets of
true positives, suggesting that their inductive biases are complementary. This motivates the use of multiple
predictors to improve coverage and robustness in real-world applications.

3 Generators and In silico Benchmarking

Among various generative strategies explored for protein binder design, two have emerged as the most widely
adopted and experimentally validated:

e Diffusion (training-based): Generative models, typically denoising diffusion models, trained to sample
binder structures conditioned on the target. These approaches require either fine-tuning or training from
scratch. Examples include RFDiffusion (28, 53], GeoFlow-v2 [45], Chai-2 [47], Latent-X [9], etc.
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Figure 2 In silico evaluation of PXDesign on unconditional protein monomer design and conditional protein
binder design tasks. (a) Unconditional monomer benchmark. Left: The ratio of designable proteins (scRMSD <
2). Right: The number of desigable structure clusters (TM-score < 0.5). (b) The time required for PXDesign-h and
PXDesign-d to generate one sample passing AF2-1G-easy under default settings respectively. (c) Success rate of binders
under the AF2-1G-easy filter defined in Table 2 across different methods on 10 representative protein targets. (d)
Success rate of binders across different methods and filters defined in Table 2. (€) The number of structure clusters
(TM-score < 0.5) of all binders and successful binders under AF2-1G-easy filter. (f) The fraction a-helix of successful
binders.



e Hallucination (training-free): Direct sequence optimization via backpropagation through a frozen struc-
ture predictor, targeting high-confidence scores such as pLDDT or ipTM. Representative tools include
BindCraft [38, 39] and BoltzDesignl [13].

Both strategies have shown strong empirical results, yet few studies have systematically compared them under
matched conditions. Here, we present a side-by-side evaluation of diffusion- and hallucination-based generation,
with both methods implemented and optimized in-house to enable a fair comparison. In this section, we
demonstrate that each method achieves state-of-the-art performance on in silico metrics, outperforming
existing baselines. Building on this foundation, we compare the two strategies directly, highlighting their
respective strengths and trade-offs for general-purpose protein binder design.

3.1 Development of Diffusion and Hallucination

Diffusion. We developed the protein design model, named PXDesign-d, built upon the Protenix structure
prediction framework. PXDesign-d supports accurate, rapid, and programmable structure-based protein
binder design. Details are described in Appendix C. Several key enhancements distinguish our approach:

e Efficient architecture: Unlike prior diffusion-based methods that rely on SFE(3)-equivariant models or
AlphaFold2-style frame representations [28, 53, 58], PXDesign-d directly generates Cartesian atom co-
ordinates. Inspired by AlphaFold3, it employs a Diffusion Transformer (DiT) backbone without using
expensive triangle updates during diffusion. This architectural simplification offers several-fold speedup in
long-sequence generation while maintaining high structural fidelity, enabling scalable virtual screening and
design of large proteins.

e Unified multi-target training: Although this work focuses on designing protein binders for protein targets,
PXDesign-d is trained to support a wide range of molecular target types, including proteins, small molecules,
nucleic acids (DNA/RNA), and post-translational modifications.

e Controllable generation: PXDesign-d supports a wide range of conditional inputs, including multiple
sequence alignments (MSAs), structural priors from the target, target-specific hotspots, and user-defined
preferences such as secondary structure or solvent-accessible surface area (SASA). While all results in
this work were generated without applying user-defined preferences, these capabilities make PXDesign-d
adaptable for future tasks requiring controllable generation.

Hallucination. We implemented PXDesign-h, a gradient-based sequence optimization pipeline using frozen
Protenix predictors (Appendix B). Several enhancements are introduced to improve this approach:

e Fnd-to-end differentiation: AlphaFold3-style models use a 200-step diffusion decoder by default, making
backpropagation infeasible. We reduce this to a 2-step ODE-based sampler in Protenix [12], enabling
efficient end-to-end differentiation through the entire structure prediction process.

e Protenix-Mini for faster optimization: We develop Protenix-Mini [23], a lightweight variant that offers
similar predictive performance to the full model but significantly faster runtime, making it ideal for iterative
sequence optimization.

e Ensemble for robustness: To improve generalization and avoid overfitting to any single predictor, we
optimize sequences against an ensemble of five Protenix-based models, sampled randomly at each step.

3.2 In silico Benchmarks

We evaluate our model under two distinct settings: unconditional protein monomer generation and conditional
protein binder generation. The unconditional generation task serves to demonstrate the model’s general
capability to generate diverse and structurally realistic proteins without external constraints. In contrast, the
conditional generation task reflects real-world applications in binder design, where the goal is to generate
protein sequences and structures that can bind to a given target with high affinity and specificity.

3.2.1 Unconditional Protein Monomer Benchmark

PXDesign-d outperforms or matches prior baselines (RFdiffusion [53], MultiFlow [10], Proteina [22]) in both
designability and diversity across various lengths up to 1400 residues, with the performance gap widening as
sequence length increases. Despite being trained only with a crop size of 640 residues, PXDesign-d maintains



strong structural fidelity and diversity even for sequences exceeding 1000 residues, where competing methods
show substantial degradation (Figure 2a). We note that recent works [17, 21], released after our benchmarking
was completed, report improved performance on similar tasks. These results reflect the rapid progress in the
field. Detailed datasets, evaluation metrics, and sampling hyperparameters are provided in Appendix D.

3.2.2 Conditional Protein Binder Benchmark

To extensively evaluate our method, following previous works [58], we use 10 protein targets with diverse
structural properties as test set. These targets are not only biologically important, but also cover the difficulty
of successfully designing binders for the proteins in the Protein Data Bank (PDB). Full benchmarking protocols,
including dataset definitions, evaluation metrics, and runtime efficiency comparisons with hallucination-based
methods, are described in Appendix D.

Quality. Across this benchmark, PXDesign-d consistently achieves higher success rates than RFdiffusion on
the AF2-IG-easy criterion (Figure 2¢). When applying alternative filters such as AF2-1G, Protenix-Mini, and
Protenix (Figure 2d), PXDesign-d maintains both higher mean success rates and broader target coverage,
with notable advantages on challenging cases like VEGF-A, IL17A, and TNF-a.

Structural Diversity. PXDesign-d generates a greater number of distinct structural clusters than RFdiffusion
for nearly all targets (Figure 2e). Analysis of secondary structure composition (Figure 2f) reveals that
PXDesign-d produces binders spanning a broad range of a-helix content, while RFdiffusion outputs are heavily
a-helix-biased. This indicates broader coverage of fold space and greater structural versatility.

Diffusion vs. Hallucination. We directly compare our diffusion-based PXDesign-d with hallucination-based
approaches, including our Protenix-powered PXDesign-h, BindCraft, and BoltzDesignl, under identical
evaluation settings. Runtime analysis (Figure 2g) shows that PXDesign-d delivers more successful designs
within 24h than any hallucination method, owing to its faster generation speed and higher pass rates.
While hallucination remains competitive for targeted, small-scale optimization, diffusion is better suited for
large-scale, exploratory campaigns.

Given these advantages, all subsequent wet-lab experiments and the PXDesign webserver deployment are
based on PXDesign-d (diffusion).

4 In vitro Experiments

We experimentally validated PXDesign on six protein targets: Interleukin-7 Receptor Alpha (IL-TRA), SARS-
CoV-2 receptor-binding domain (SC2RBD), Programmed Death-Ligand 1 (PD-L1), Tropomyosin receptor
kinase A (TrkA), Vascular Endothelial Growth Factor A (VEGF-A), and Tumor Necrosis Factor-a (TNF-q),
chosen for both biological relevance and diverse design challenges (Table 3).

For each target, we used the PXDesign-d to generate a diverse set of in silico designs (60-160 aa) and applied

Table 3 Targets and experimental results of PXDesign-d binders. For SC2RBD and IL-7RA, “v0” indicates
results from the initial PXDesign version. A binder is counted as successful if Kp < 1000 nM.

Target PDBID Crop Hot-spot Candidates Successful
Tested Binders
IL-TRA 3DI3 B17-209 B58, B80, B139 10 (v0) 4 (v0)
SC2RBD 6MOJ E333-526 E485, E489, E494, 9 (v0) + 8 2 (v0) +4
E500, E505

PD-L1 5045 A17-132 A56, A115, A123 11 8

TrkA 1IWWW  X282-382 X294, X296, X333 15 3

VEGF-A 1BJ1 V14-107, W14-107 W81, W83, W91 17 8

TNF-« 1TNF A12-157, B12-157,  A31, A32, A113, 16 0

C12-157 C73, C87




a filtering pipeline: Candidates were required to pass both AF2-IG and Protenix filters (the Protenix ipTM
cutoff was relaxed to 0.80 for VEGF-A, SC2RBD, and TNF-« to maintain diversity). Passing designs were
clustered by structural similarity using Foldseek [48], and the highest-ranked representative by Protenix ipTM
from each cluster was selected, yielding 818 candidates per target.

Selected binders were expressed in an E. coli cell-free system with an N-terminal Strep-tag and purified via
Strep-Tactin affinity chromatography. Designed proteins with expression yields greater than 0.3 mg/mL
(determined by A280) or 0.2 mg/mL (determined by the Bradford assay[8]) were subjected to BLI affinity
measurements. An initial screening using biolayer interferometry (BLI) was conducted at a single concentration
of 1000 nM to identify potential binders. Candidates exhibiting response signals above 0.06 nm were selected
for multi-concentration BLI assays to determine Kp. Binders with K < 1000 nM were considered successful.
Both expression and BLI assays were performed by GenScript (Nanjing, China), and target proteins were
purchased from Sino Biological (Beijing, China).

PXDesign v0 has already achieved strong performance on IL-7TRA, surpassing all baselines except Chai-2. On
SC2RBD, the updated PXDesign shows a marked improvement over v0, increasing the hit rate from 22.2% to
50.0%. Moreover, on PD-L1, PXDesign achieves a hit rate of 72.7% (8 out of 11), which is comparable to
Chai-2 (about 70.0%) and well above all other baselines.

PXDesign can design structurally diverse protein binders that exhibit potent target binding (Figure 3). For
each target, PXDesign produces binders with distinct fold and diverse secondary structure compositions,
as evident from the range of a-helical, S-strand, and mixed folds. This diversity reflects the framework’s
ability to explore broad structural space while still achieving high-affinity binding, enabling robustness across
heterogeneous design challenges.

5 Limitations and Challenges

While confidence-based filtering shows strong potential, several challenges remain.

Score variability across targets. Confidence scores exhibit substantial variability across targets (Figure 4),
which makes tuning and selecting unified thresholds challenging. We further observe that success rates among
different targets have Pareto tradeoffs: improvements on one target often degrade performance on others, and
Pareto improvements are difficult to achieve. For example, in Figure 4, raising the pTM threshold from 0.75
to 0.92 boosts the FGFR2 success rate from 5% to 100%, while the SC2RBD success rate falls from 0.1%
to 0%. Effective filtering strategies must account for such target-specific shifts, as well as the constraints of
limited evaluation datasets. Model-agreement-based approaches may help mitigate some of these weaknesses.

Dataset limitations. The Cao data contains very few strong binders, which limits its utility for evaluating
high-precision filtering strategies. In particular, certain filters, such as Protenix-Mini on SC2RBD, exhibit
zero success rate (SR) due to the sparsity of validated positives. While Protenix also shows low SR on the
EGFR subset of Cao data (Figure 1b), it achieves substantially higher AUC and success rate on the EGFR
competition dataset (Figure 9). Additionally, our wet-lab experiments indicate that intersection filters can be
effective in practice, even though they appear overly stringent on Cao data. Despite these issues, Cao remains
one of the only large-scale, publicly available benchmarks for binder filtering, underscoring the need for richer
datasets to support fair and consistent evaluation.

Pipeline limitations. Our current pipeline relies on multiple sequential steps—generation, structural prediction,
filtering, and clustering—each with its own computational cost and potential error propagation. While this
modular design improves interpretability and flexibility, it can be resource-intensive for very large design spaces
and may limit throughput in time-sensitive campaigns. Integrating filtering more tightly with generation or
exploring early-stage, low-cost triage methods could improve scalability.

Experimental limitations. Our current experimental assessment of success rate is constrained by the throughput
of the BLI assay. Incorporating display-based screening methods could substantially increase throughput,
enabling the evaluation of approximately 100 designs per target. Similar to AlphaProteo, our pipeline
encountered difficulty with one challenging target, TNF-«, despite achieving remarkable improvements in
success rates for the other five targets. For PD-L1, six designs were excluded from testing due to low expression
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Figure 3 Designhed binders and characterization. For each row, three structures of nanomolar binders were
showcased. The right columns are BLI sensorgrams at multiple analyte concentrations; the vertical dashed line marks
the switch from association to dissociation phases.

yields; however, nearly all of the remaining designs were confirmed to be functional binders. In addition
to failures among our own designs, we occasionally encountered positive controls that did not successfully

expressed. We are actively developing a robust experimental platform to enable reliable characterization of
designed binders at scale.
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Figure 4 The Protenix-Mini pTM score distributions and success rates on different targets. The left y-axis
shows the density of pTM scores, while the right y-axis displays the success rate across different pTM thresholds.
Across different targets, the best success rates correspond to distinct pTM thresholds.

6 From Protein Binders to a Unified Model for Molecular Design

While our current in silico and wet-lab validations focus on protein binder design, the underlying framework
is readily extensible to a broad range of molecular targets. Systematic benchmarking and experimental
validation of these additional modalities represent important future directions.

6.1 Demonstration Across Modalities

While the primary focus of this work has been on protein binder design, our design model naturally extends
beyond these tasks. Since both our diffusion and hallucination generators are built on (or closely derived
from) the Protenix structure prediction framework, they inherit the ability to model diverse biomolecular
targets, including nucleic acids, small molecules, and post-translationally modified proteins. In principle, the
same generative—filtering pipeline can be applied to these modalities.

At present, these broader applications have not undergone the same level of rigorous evaluation as protein
binders. We have conducted case studies (Figure 5 and Figure 6¢) that illustrate the feasibility of generating
binders for nucleic acids, small molecules, and cyclic peptides, but these remain qualitative demonstrations.

Symmetric oligomers Ligand binder RNA binder DNA binder

Figure 5 Case studies illustrating the versatility of our unified design model. Example designs for symmetric
oligomers, ligand binder, RNA binder, DNA binder.

6.2 Cyclic Peptide Binder Benchmark

Cyclic peptides are emerging as a promising therapeutic modality due to their enhanced membrane permeability,
oral bioavailability, synthetic tractability, low immunogenicity, and capacity for specific binding to protein
surfaces previously considered “undruggable” |26, 29, 37, 41, 41, 42, 42, 50-52, 59|. Cyclic peptide binder
design is structurally and biophysically similar to protein binder design, allowing reuse of in silico metrics with
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Figure 6 In silico evaluation of PXDesign on zero-shot cyclic peptide binder design. (a) Success rates of
various methods across targets, evaluated using the AF2-1G-easy filter. (b) Expected number of successful cyclic
peptide binders generated within a 24-hour period for each method and target. (c) Representative design targeting
MDM2. Left: Protenix-predicted complex structure. Right: zoomed-in view of the binding interface. The conserved
"F—W-L" triad is highlighted in orange. Key interactions are shown. (d) Representative design targeting TNF-cv. Left:
Protenix-predicted complex structure. Right: zoomed-in view of the binding interface. Key interactions are shown.

minimal modification. As a first cross-modality benchmark, we extended both PXDesign-d and PXDesign-h
for zero-shot cyclic peptide binder generation targeting 12 diverse proteins, including AlphaProteo targets
[58] and proteins with previously reported binders [41, 42|, spanning sequence lengths of 8-18 residues.

Our models consistently outperform RFpeptides [41] in success rates under the AF2-IG-easy criterion
(Figure 6a) and in efficiency measured by the expected number of successful designs per 24h (Figure 6b),
with particularly strong gains on challenging targets such as TNF-a. While PXDesign-h is slower, it achieves
superior performance on specific targets (e.g., MDM2, MCL1, IL17A, TNF-«a), and its performance further
improves when using native sequences without ProteinMPNN redesign—highlighting its ability to generate
viable sequences directly (Figure 12).

Detailed benchmarking protocols and per-length analyses are given in Appendix F. Representative designs for
MDM2 and TNF-« (Figure 6¢—d) illustrate structurally plausible interfaces, with the MDM2 design recovering
the conserved “F—W-L” interaction triad critical for hydrophobic binding [7].

7 Discussion

We have presented PXDesign, a unified framework for structure-based molecular design that integrates
scalable diffusion-based generation (PXDesign-d) with complementary hallucination-based search, coupled to
multi-filter prioritization using orthogonal structure predictors (AF2-IG and Protenix). Across extensive in
silico benchmarks and wet-lab validation on six biologically diverse protein targets, PXDesign-d demonstrates

12



higher throughput, higher pass rates, and broader structural diversity than hallucination approaches, making
it well-suited for large-scale exploratory campaigns. Guided by these findings, both our experimental pipeline
and public web server are currently built on PXDesign-d.

Our filtering analyses reveal that no single confidence metric generalizes across all targets—success rate
optima vary, and ensemble filtering provides broader design space coverage. Current public benchmarks,
such as the Cao dataset, have sparse positive signal, constraining statistical resolution and sometimes
misrepresenting practical performance. Improved, community-shared datasets with richer annotations are
essential for accelerating method development and enabling fair comparisons.

While this work has focused on protein—protein binder design, the framework generalizes naturally to other
modalities. Our case studies and initial benchmarks on cyclic peptide binders demonstrate that minimal
modifications allow zero-shot generalization beyond proteins, and the same generative—filtering pipeline is
in principle applicable to nucleic acids, small molecules, and post-translationally modified proteins. Scaling
experimental validation to these modalities—particularly where high-quality benchmarks and structure
predictors are available—is an important next step.

From a modeling standpoint, our results underscore the advantages of generative architectures that are both
high-throughput and conditioning-flexible. Diffusion provides efficient large-scale sampling, while hallucination
retains value for targeted, small-scale optimization. As structure prediction continues to advance, deeper
integration of prediction and design—where predictors act not only as filters but also as gradient-informed
guides—could enable faster, more accurate, and more interpretable workflows. Protenix already illustrates
this potential by serving both as a scoring function and as a backbone for generative models.

In summary, PXDesign offers a practical and extensible pipeline for large-scale structure-based design, validated
in wet-lab experiments and accessible via a public web server. By combining complementary generative
paradigms, orthogonal filtering, and open benchmarks, we aim to support a broader shift toward unified,
general-purpose molecular design systems that bridge computational discovery and experimental realization.
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Appendix

A Filtering Methodology and Benchmark Evaluation

Filter Development

To identify general-purpose, model-specific filters, we perform a grid search over combinations of confidence
scores. We construct and evaluate confidence-based filtering strategies from two structure predictors: Pro-
tenix [12] and AF2-1G [53]. AF2-IG is a variant of AlphaFold2 adapted for binder design where “IG” denotes
“initial guess” [5, 53]. We also include Protenix-Mini, a compact variant with reduced model size, and
Protenix-Mini-Templ, which uses the target structure as a fixed template without relying on MSA input.
All Protenix models utilize a 2-step ODE sampler for efficiency, replacing the standard 200-step diffusion
sampler.

We design a two-stage filtering strategy to identify high-quality protein complex predictions generated by
Protenix. In the first stage, we identify informative evaluation metrics and select an optimal triplet combination
based on their ranking performance across targets. In the second stage, we perform a grid search over the
cutoff values of the selected metrics to determine optimal thresholds for filtering.

Stage 1: Metric Selection and Combination. We first evaluate the ranking performance of individual metrics
using a Top-1% threshold classifier and compute the Enrichment Factor (EF) to measure how effectively each
metric identifies high-quality predictions. For each target, we select the Top-3 metrics with the highest EF
values. Based on frequency analysis, we identify eight most frequently selected metrics (some with the same EF
score): binder pTM, complex pLDDT, interface pLDDT, binder ipTM, complex pTM, binder chain pLDDT,
complex gpDE, and interface gpDE. From these eight metrics, we evaluate all possible triplets (C(8,3) = 56
combinations) as filters. For each triplet, we apply the Top-1% quantile as a threshold and classify a sample
as positive only if it satisfies all three thresholds simultaneously. We compute the Success Rate (SR) for each
combination on every target and rank them accordingly. The final optimal combination is determined by
aggregating rankings across all targets and selecting the one that achieves the most “Top-1” positions. The
final optimal combination is determined by aggregating rankings across all targets and selecting the one that
achieves the highest ranking among all targets. Ultimately, we find that a simplified filter using only two
metrics, binder pTM and binder ipTM, achieves comparable or better performance than the full triplet, while
offering improved robustness and interpretability. Therefore, we adopt {binder pTM, binder ipTM} as the
final filtering metric set.

Stage 2: Cutoff Grid Search. Finally, to refine the filtering process, we perform a grid search to determine the
optimal cutoff values for the two selected metrics, binder pTM and interface ipTM. We formulate the filter
selection problem as an optimization problem,

max (SRq(x), SRa(x),...,SRx(x)), (1)
xeX

in which SR; denotes the success rate on the target i, and the set X is the feasible set of confidence score

threshold combination. Typically, there is no feasible solution that can maximize all objective functions

simultaneously. Consequently, the focus is the solutions where improving any objective cannot be achieved

without deteriorating at least one other objective, which is defined as Pareto Frontier.

Definition: A solution z; € X dominates o, if

Vi, SRZ(itl) > SRl((EQ), E'Z, SRZ(I'l) > SRZ(.’KQ) (2)
A solution z* € X is Pareto optimal if there does not exist another solution x that dominates it. The set of
Pareto optimal is called Pareto Frontier.

For each threshold combination, we compute the success rate (SR) on each target. Following the definition of
Pareto Frontier, the search algorithm can come to a set of optimal points (as demonstrated in Figure 7). To
distinguish the final solution, we tend to the solution which has minimal shifts across different targets, known
as robust selection or risk aversion policy [4]. We calculate the rank of each combination’s SR within each
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Figure 7 The performance of the AF2 confidence score filters. The SR for each confidence combination is plotted
as one gray dot. The pareto frontier filters are highlighted as red stars, and the selected one is marked as a black star.

target and then take the average rank across all targets. This average rank serves as the overall “score” for
the threshold combination. As demonstrated in Figure 7c, we come to a balanced SR solution on FGFR2 and
SC2RBD. Ultimately, we select the combination with the highest score as the final filtering criteria.

Additional Benchmark Results
Per-Score Filter Evaluation

To complement the Top-1% SR analysis in the main text (Figure 8), we provide additional evaluation of
individual confidence scores using two standard ranking metrics: AUC (area under the ROC curve) and AP
(average precision, or area under the PR curve). These metrics reflect how well each score discriminates
binders from non-binders across a range of thresholds, independent of any fixed selection cutoff.

(a)
AUC for individual confidence metrics on Cao data
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(b)
Average precision for individual confidence metrics on Cao data
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Figure 8 AUC and Average Precision scores for individual confidence metrics on Cao data. (a) Higher values
indicate better global discrimination between binders and non-binders. (b) Similar to AUC, but more sensitive to
top-ranking false positives.

We report AUC and average precision scores for individual confidence metrics across diverse design targets
(Figure 8). These results are generally consistent with the Top-1% SR trends, reinforcing that Protenix-
derived scores outperform AF2-based scores in most cases. However, no single metric is universally opti-
mal—performance varies by target and model. For instance, AF2 shows stronger precision on Insulin and
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SC2RBD, as well as higher AUC on TrkA.

Ranking Accuracy

We further assess whether confidence scores can effectively prioritize designs by binding strength, beyond
binary filtering. As shown in Figure 9, Protenix-derived scores consistently achieve higher AUCs across two
distinct datasets: (@) On the EGFR binder challenge [16], which includes 400 designed binders with expression
and binding affinity annotations, Protenix outperforms AF2 and ESM across multiple ranking metrics. (b)
On the SKEMPIv2 subset filtered by AF3 [34], Protenix matches or exceeds AF3 in AUC overall and shows
particularly strong performance on affinity-increasing mutations.

(a) (b)
AUC on EGFR data AUC on SKEMPI data
M AF2 ipTM [ Protenix ipTM [ ESM PLL W AF2 ipTM [ AF3 ipTM [ Protenix ipTM
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0.8
0.7 0.7
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Expression Affinity Affinity(hard)

Figure 9 AUC on EFGR and SKEMPI data.

B PXDesign-h (hallucination) Details

Protenix, as a structure prediction model, not only excels at predicting complex protein structures but also
provides reliable confidence estimates for those predictions. By treating the input binder sequence logits as
trainable parameters, we can leverage these confidence scores to perform backpropagation through Protenix,
effectively navigating the sequence space to discover high-quality binder candidates.

The hallucination process consists of two key components: (1) backbone models that supply gradient signals
for updating the sequence parameters, and (2) optimization strategies that effectively utilize this gradient
information. In this section, we first describe the backbone models employed in our framework, followed by
an overview of the loss functions and optimization strategies used to guide the discovery of promising binder
sequences.

Backbone structure prediction models

We employ five variants of the Protenix model family to provide gradient signals: Protenix, Protenix-Mini,
Protenix-Mini-v2, Protenix-All-Data, and Protenix-Template. Among these, Protenix-Mini-v2 denotes a
version of Protenix-Mini trained with different random seeds for its confidence module; Protenix-All-Data
refers to a Protenix-Mini variant trained on a larger and more diverse dataset; and Protenix-Template indicates
a Protenix-Mini model trained with the additional guidance of provided template structures. To prevent
overfitting to any single model during the hallucination process, we randomly select one of these structure
prediction models at each optimization step to perform the forward and backward passes, thereby generating
the necessary gradient information for sequence updates.

Loss and Optimization

Thanks to its two-step diffusion architecture, the Protenix-based hallucinator enables end-to-end backpropaga-
tion of gradients from all confidence metrics, rather than being limited to contact loss derived from Pairformer
outputs [13]. In our implementation, we combine multiple loss components with the following weights: pLDDT
(0.15), pAE (0.4), ipAE (0.1), contact loss (1.0), interface contact loss (1.0), helix loss (—0.3), and radius of
gyration of the designed binder (0.3). The core ingredients in hallucination process can be described as:

sp =811 — 7 VL (fo(s¢-1,0)), (3)
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Figure 10 Overview of one-step optimization in Protenix-Hallucination. At each optimization step, a backbone
structure prediction model, denoted as Protenix-X, is randomly selected from five candidates: Protenix, Protenix-Mini,
Protenix-Mini-v2, Protenix-Mini-All-Data, and Protenix-Mini-Template, to prevent overfitting to the gradient pref-
erences of any single model. During the forward pass, the target structure, target sequence, and binder sequence
are input into Protenix-X to generate sequence representations s and pairwise representations z. Subsequently, an
ODE-based sampler with 2 sampling steps efficiently predicts complex structures, and a loss defined on the generated
structures is computed. Finally, gradients from this end-to-end differentiable process are used to update the protein
binder sequence logits.

where s; represents binder sequence logits at time step ¢, £ is the loss functions defined on the outputs of
structure prediction model fy, ¢ denotes the conditions, e.g. target structures and sequences and <y is the step
size for optimization. For binder hallucination, we adopt a 4-stage relaxed-to-hard sequence optimization
process inspired by Pacesa et al. [38] and Cho et al. [13], which is detailed below.

Stage 0: Softmax Warm-up To avoid unstable exploration in the continuous logits space and to encourage the
generation of realistic binder sequences, we begin with randomly initialized binder sequence logits. During this
stage, we perform gradient descent updates guided by the backbone model’s feedback, followed by a softmax
operation on the logits. This procedure ensures that the logits represent a valid amino acid distribution at
each step.

Stage 1: Soft logits update We use logits from Stage 0 to re-initialize our binder sequence logits and start
soft-logit updates during this stage. As the optimization steps increase, we continuously transfer binder
sequence representation from soft logits s to softmax logits p = softmax(s) by linear interpolating soft logits
and softmax logits. For example, we have in total T steps in this stage, at time step ¢, binder sequence is
represented as (1 — A)s + Ap, where A = ££L,

Stage 2: Softmax logits update In this stage, the goal is to transfer sequence logits representation from
continuous representation to the final one-hot representation. To do so, we slowly decrease the temperature 7
to get temperature-conditioned softmax logits p = softmax(*). For a T-step stage 2, temperature at time
step t is given by 7, = 0.01 + (1 — 0.01) x (1 — (¢t + 1)/T)?. Furthermore, we also use 7; to scale our learning
rate 3 = 7y - 74 to stabilize the final update of the binder sequence representation that are close to one-hot
representation.

Stage 3: One-hot sequence update Finally, we directly get one-hot sequences by taking argmax from softmax
sequence logits. To update one-hot sequence, we update softmax sequence using the gradients on it. The hard
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sequence s at time step ¢ is given by s = stop_grad(argmax(softmax(s;)) — softmax(s;)) + softmax(s;).

C PXDesign-d (diffusion) Details

Model Architecture

PXDesign-d is a diffusion-based protein design model built as a direct extension of the Protenix all-atom
structure prediction framework. To enable generative capabilities, we introduce a special token [xpb] to
denote residues to be designed. Each [xpb] token consists of four backbone atoms (N, CA, C, O). During
training, the coordinates of all atoms are perturbed with noise and subsequently denoised through a learned
diffusion process. Target residues are soft-conditioned through pairwise features. Specifically, the single-token
condition s is initialized by embedding basic residue-level features, such as amino acid identity, hotspot
annotations, etc. The pairwise condition z is initialized by embedding binned pairwise distances derived from
the target structure. If no distance information is available for a residue pair, we assign it to a special bin.

Because binned pairwise distances offer strong structural constraints, we find it unnecessary to freeze the
coordinates of target residues during training. Instead, the model learns to recover structure directly from
these embedded pairwise signals. For the condition-based generation task, unlike previous methods [53]
that relied on inpainting, PXDesign-d directly generates the coordinates of all atoms from noisy structure.
Throughout the process, no additional constraints are imposed on the noise. This approach preserves the
topology of the condition region while allowing flexibility in its side chains.

The overall architecture consists of two components: the prior module and the diffusion module. The diffusion
network component includes 4 layers of atom-level attention encoders, 16 layers of a token-wise transformer,
and 4 layers of atom-level attention decoders.

Training

PXDesign-d is trained on a large and diverse dataset that integrates both experimentally resolved structures
and distilled data derived from predictive models. The dataset composition closely follows the training corpus
used for Protenix, but with several extensions. We curated a subset of the Protein Data Bank (PDB) [6] up to
May 1, 2021, and categorized complexes based on their molecular context. These include protein monomers as
well as complexes involving proteins, ligands, DNA, or RNA. For each complex, we define task-specific design
objectives by specifying which residues are subject to design, allowing for fine-grained control over sampling
across different structural and functional categories. To enhance coverage and diversity, we supplement the
experimental data with high-confidence structures predicted by AlphaFold2. Specifically, we incorporate
monomer structures from the AlphaFold Protein Structure Database (AFDB) [49] and MGnify [43].

PXDesign-d is trained from scratch in two stages to facilitate both general structural modeling and target-
conditioned generation. In the first stage, we upweight monomer-only distillation data, enabling the model to
learn the fundamentals of protein backbone geometry in an unconditional setting. In the second stage, we
gradually shift the sampling distribution toward experimentally resolved PDB complexes and target-conditioned
design tasks.

The model is trained end-to-end by minimizing a weighted combination of loss functions. Specifically, we
apply an MSE loss over all heavy-atom coordinates and a smooth LDDT loss, as used in Protenix for structure
prediction. Additionally, we find that introducing a distogram loss on projected token embeddings helps
improve local consistency and geometric plausibility. For the distogram loss and the smooth LDDT loss
function, during training, we masked the samples with a noise scale less than 4A. The total loss is:

L = (0.03Laisto + 1.0LLppr) - 1(f < 4A) + 4.0L\isE- (4)

We use a crop size of 640 residues, a batch size of 64, and a diffusion batch size of 8. The model is optimized
using Adam with a learning rate of 0.0005. The diffusion noise schedule follows the same formulation as
Protenix.
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Sampling and Evaluation in Benchmark

We perform diffusion-based sampling with 1000 steps for monomer generation and 400 steps for binder
generation. We set the sampling parameters y9 = 1.0 and 7,5, = 1.5 via a preliminary hyperparameter grid
search.

As shown in Figure 11b, the parameter 7 controls the trade-off between designability and diversity: higher
values of 7 generally lead to higher-quality structures but reduced structural diversity. An ablation study of
different 1 schedules shows that both linear and piecewise schedules outperform fixed-n variants, particularly
for long-sequence generation. Based on these results, we adopt a piecewise schedule in our final model, where
n = 1.0 for t < 0.65 and n = 2.0 for ¢t > 0.65.
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Figure 11 Ablation on 7 schedule in unconditional design. 7 increase from 1.0 to 2.0 in the linear and piecewise
schedules. Piecewise schedules increase n at ¢ = 0.65 or ¢t = 0.7.

D Generator Benchmarking Details

Unconditional Monomer Generation Protocol

For each sequence length (200-1400 residues), we generate 100 monomer backbones per method (RFdiffusion,
MultiFlow, Proteina, PXDesign-d). Sequence design is performed using ProteinMPNN-CA [18] with default
settings, followed by structure prediction using ESMFold [31]. Since PXDesign-h is specialized for binder
design, we exclude it from this comparison.

Designability metric: A backbone is considered designable if the best self-consistency RMSD (scRMSD),
computed over 8 independently designed sequences, is below 2 A.

Diversity metric: Following Yim et al. [57], designable backbones are clustered using a TM-score threshold of
0.5, and the number of resulting clusters is reported.

The same evaluation protocol and random seeds are used across all methods to ensure fair comparison.

Conditional Binder Generation Protocol

Following Zambaldi et al. [58], we use a benchmark set of 10 protein targets with diverse structural properties.
For each target, we generate binders using RFdiffusion (noise = 0.0 and 1.0), PXDesign-d, or hallucination-
based methods, then perform sequence design with ProteinMPNN [18] at temperature 0.0001.

Since structure generation speed differs substantially between diffusion- and hallucination-based methods, we
adopted evaluation settings that reflect realistic computational trade-offs. For diffusion-based designs, each
generated structure was paired with a single ProteinMPNN sequence. For hallucination-based designs, where
structure generation is much slower, we followed the BoltzDesignl protocol [13] and sampled 8 sequences per
structure to increase the chance of success. A design was deemed successful if at least one sequence met the
filter criteria defined in Table 2.
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Diversity metrics: We cluster generated binders using TM-score < 0.5 and report both the number of clusters
and the number of successful clusters.

Secondary structure analysis: Secondary structure content (a-helix percentage) is computed using DSSP on
the folded structures, aggregated per target.

Runtime efficiency: To better reflect real-world efficiency, we measured both generation and evaluation times
for different methods. Specifically, we measure the number of successful designs generated within 24 hours
(including generation + evaluation) for diffusion- and hallucination-based methods (PXDesign-h, BindCraft,
BoltzDesignl). we used the default experimental settings for each method. The length of generated binders
strictly followed the previous work. For various targets, we generated 1,280 to 2,880 samples using NVIDIA
A800 GPUs and recorded the average number of AF2-1G-easy filter-passing candidates produced within 24
hours.

BindCraft adjustments: Since BindCraft integrates hallucination and evaluation in a single pipeline, we removed
evaluation time from our measurement to enable a fairer comparison. Specifically, we measured the time
consumed by the binder_hallucination function (https://github.com/martinpacesa/BindCraft/blob/
main/bindcraft.py, Lines 109-111). Within this function, we counted only the time taken to hallucinate the
binder, excluding the time spent on trajectory checking (https://github.com/martinpacesa/BindCraft/
blob/main/functions/colabdesign_utils.py, Lines 177-233).

A complete list of the GitHub repositories and commit hashes for all compared methods is provided in Table 4.

Table 4 Details on running the compared methods.

Method GitHub repository and Commit

RFdiffusion https://github.com/RosettaCommons/RFdiffusion/tree/main
£a340147b9006156b251d1ad0391e3eaB8e5£73eb

BindCraft https://github.com/martinpacesa/BindCraft/tree/main
05702c435e2172a99c2b3faf87487badb6e54727

BoltzDesign https://github.com/yehlincho/BoltzDesignl

627c0cc7bab41e56£544c5d15467b2dbeb490168

E Details of Wet-lab Results

1. PXDesign: We report two metrics for PXDesign:

e bind over tested: the number of binders with BLI-measured affinity within 1000 nM divided by the
number of candidates successfully measured by BLI,

e bind over designed: the number of binders with BLI-measured affinity within 1000 nM divided by
the number of candidates sent for wet-lab expression. Some designs were not successfully expressed,
which reduces this metric; however, expression failures are not necessarily indicative of true lack
of expressibility, as we observed similar failures even among known positive controls reported by
AlphaProteo.

Table 5 Binding performance metrics for PXDesign across different analytes.

IL-TRA  PD-L1 VEGF-A SC2RBD TrkA
PXDesign bind over tested 40.0 72.7 47.1 35.3 20.0
PXDesign bind over designed 40.0 47.1 44.4 33.3 16.7

2. AlphaProteo: Table 1 of the main text reports success rates based on yeast display, which is known to
have frequent false positives. We therefore corrected these rates using the true positive ratio from HTRF
validation results (Table S3).
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3. Chai-1d | Chai-2: Results were obtained by manual reading of Figure 2a.

4. Latent-X: The success rates reported in the main text are based on mammalian display, which does not
fundamentally differ from yeast display. We therefore supplemented these with success rates corrected
using high-throughput BLI measurements.

F Cyclic Peptide Details

Benchmark Settings

Target information. We benchmarked the performance of PXDesign in cyclic peptide binder design against
12 diverse protein targets: 8 minibinder targets from AlphaProteo [58] (BHRF1, SC2RBD, PD-L1, TrkA,
IL-7TRA, IL17A, VEGF-A, TNF-«), 3 targets with experimentally determined structures from RFpeptides
[42] (MCL1, MDM2, GABARAP), and 1 target from AfCycDesign [41] (Keapl). For the AlphaProteo and
RFpeptides targets, we adopted the cropping schemes and hotspot selections described in the respective
original studies. For Keapl, as AfCycDesign primarily employed hot-loop grafting rather than de novo design,
we generated cyclic peptides using the structure with PDB ID 2FLU [33], applying a cropping range of
A325-609 and hotspot residues A334, A380, A382, A415, A483, and A530, according to previous structural
biology research [33].

Method setup. For PXDesign, we incorporated the Type 2 cyclic offset as described in AfCycDesign [41]
into the positional encoding module on the cyclic chain. All other settings followed the minibinder design
protocols detailed in Appendix B and Appendix C. For the baseline method, RFpeptides [42], we used the
RFdiffusion release specified in Table 4. Each method was used to generate 128 peptide sequences of lengths
8-18, considering synthetic feasibility, developability, structural stability, and prior successful designs.

To assess real-world efficiency, we estimated the number of successful designs within 24 hours on an NVIDIA
V100 GPU. The in silico success rate for cyclic peptide binders is determined using the AF2-1G-easy filtering
criteria, encouraged by prior work leveraging AlphaFold2-based filters [41, 42]. As large-scale experimental
binding data for cyclic peptide binders remain unavailable to our knowledge, we leave the validation and
refinement of these in silico filters for future investigation.

Additional Results

In addition to the overall in silico success rates for cyclic peptide binder design tasks shown in Figure 6a, we
report detailed per-length success rates across different targets in Figure 12.
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Figure 12 Per-length in silico success rates for zero-shot cyclic peptide binder design. Success rates are assessed
under the AF2-1G-easy filtering criterion.
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